COASTAL SURGE PROTECTION: Galveston Bay Park Plan

City of Houston TTI Committee SSPEED Center

Agenda:

- Introductions
- Overview of Study and ADCIRC Modeling
 Jim Blackburn, SSPEED Center
- Conceptual Plan for Galveston Bay Park Rob Rogers, Rogers Partners

• Overview of Gate Design

Melanie Galantino, Walter P. Moore Engineers

Discussion

GBPP Study for Stakeholders

(City of Houston, Harris County, Port of Houston Authority and Joe Swinbank)

Purpose:	 To document the feasibility of the Galveston Bay Park Plan (GBPP) and address questions previously raised in order to determine whether to proceed to next steps
Assumption:	 Designed to be compatible with coastal barrier
Questions:	 Need for the GBPP Cost of the GBPP Benefits of the GBPP Preliminary environmental Impacts (e.g. Oysters, Salinity)
Activities:	 Surge modeling of GBPP w/ and w/out Coastal Barrier Expanded conceptual design of GBPP, incl HSC Gate Refine cost estimates of GBPP and its benefits Evaluate potential impacts on Oysters and bay salinity Conduct public outreach to solicit comments

GBPP Study Team

- SSPEED Center/Rice University Management and Modeling
- Rogers Partners Planning and Design
- Walter P Moore / Martinez Moore / Cibor, Inc. Engineering
- University of Texas at Austin Modeling
- Matagorda Bay Foundation Oysters
- Outreach Strategists, LLC Public Outreach
- Blackburn Carter Law Firm Legal Analysis
- Bryan French, Attorney Legal Analysis
- Blake Eskew Economic Analysis

ADCIRC Modeling of Coastal Surge Protection: Galveston Bay Park Plan

BASE MAP – EXISTING + COASTAL BARRIER

BASE MAP – EXISITNG + COASTAL BARRIER + GBPP

MAXIMUM STORM SURGE LEVELS - EXISTING

MAXIMUM STORM SURGE LEVELS – EXISTING + COASTAL BARRIER

MAXIMUM STORM SURGE LEVELS – EXISTING + COASTAL BARRIER + GBPP

MAXIMUM STORM SURGE LEVELS – EXISTING + COASTAL BARRIER + GBPP

COMPARISON OF MAX. SURGE LEVELS AT KEY LOCATIONS

Galveston Bay Park

ROGERSPARTNERS Architects+Urban Designers

MAPS Ship Channel

Legend

MAPS **Existing Land**

Legend

Existing Islands

Project 11 Deposit Sites

Potential Additional Deposit Sites

MAPS **Oyster Reefs**

Legend

MAPS Wells and Pipelines

Legend

O Wells

----- Pipelines

MAPS Small Craft Navigation

MAPS Land Form Distribution

MAPS Scenic Overlooks

Legend

Viewpoint

MAPS Water Circulation

Legend

 Water Circulation Through Islands

M A P S Program

Land Mass (in acres)

Existing:	4,373	47%
Project 1	1: 613	7%
GBP:	4,271	46%
Total:	9,258	

MAPS **Regional Plan**

M A P S Shoreline

Legend

Hard Edge

M A P S Shoreline

Legend

Hard Edge

Soft Edge

MAPS Public Access

Legend

- Private Coast Full Public Access
- Boat Docks open to the Public

DIAGRAMS Dredging

Road Section

KEY PLAN Habitat Creation

KEY PLAN Ship Spotting

KEY PLAN Small Craft Navigation Gate

KEY PLAN Campgrounds and Trails

Environmental Restoration and Education

Main Gate and Ferry Crossing

DIAGRAMS Park Comparison

Brazos Bend State Park	Bastrop State Park	San Angelo State Park	Lake Somerville State Park	Galveston Bay Park	St. Vincent National Refuge	Indiana Dunes National Park
Texas	Texas	Texas	Texas	Texas	Florida	Indiana
4,897 Acres	7,580 Acres	7,677 Acres	8,700 Acres	9,258 Acres	11,800 Acres	15,066 Acres

Galveston Bay Park Plan Operable Barrier

September 28, 2023

Current Design Concept

Channel Alternatives

OVERVIEW Channel Alternatives

Alternative 2: Deepest Channel Width with Separate Barge Lanes

Alternative 1: Full Channel Width (Houston Pilots' Strong Preference)

Alternative 1: Full Ship Channel

Alternative 1B: Full Channel + Deepening 30 Surge Protection Height 20 10 VAVD 88 **V**MLLW 0 Elevation, Feet (MLLW) -50 -30 -40 Channel Depth Channel Width -50 -60 -70 -80 -800 -700 -500 -400 -300 100 200 300 400 600 700 800 -600 -200 -100 0 500 Distance from Centerline, Feet

Alternative 2a: Channel Deepening

CHANNEL ALTERNATIVES Main Barrier Scope

Elevation view of barrier face within channel

Quantity	Alternative 1 (Full Channel)	Alternative 2A (Channel Deepening)	Alternative 2B (Channel Widening)
Channel Width (ft.)	1,200'	700'	900'
Channel Depth (ft.)	45'	65'	45'
Barrier Height (ft.)	70'	90'	70'
Total Load Path (kip-mi)	22,600	10,100	12,700

CHANNEL ALTERNATIVES Cost Estimates of Channel Alternatives

Quantity	Alternative 1A (Full Channel)	Alternative 1B (Full Channel + Deepening)	Alternative 1C (Full Channel + Widening)	Alternative 2A (Channel Deepening + Barge Lanes)	Alternative 2B (Channel Widening + Barge Lanes)
Main Barrier Span (ft.)	1,200'	1,200'	1,400′	700′	900'
Main Barrier Depth (ft.)	45'	65'	45'	65'	45'
Barge Lane Barrier Spans (ft.)	N/A	N/A	N/A	2 x 235′	2 x 235′
Barge Lane Barrier Depth (ft.)	N/A	N/A	N/A	15'	15'
Parametric Cost Model (USD) (Kluijver et. al, 2019)	\$1.04 B ± 400 M	\$1.51 B ± 576 M	\$1.22 B ± 470 M	\$1.01 B ± 390 M	\$919 M ± 350 M

Structural System Alternatives

EXISTING PRECEDENT: The Maeslantkering, Rotterdam, NE

Undeployed

Deployed

Double Leaf Sector Gate, 1,200 ft. span

EXISTING PRECEDENT: Bayou Chene Barrier, St. Mary Parish, Louisiana

Barge Gate, 446-foot Span

Structural System Alternatives

System 1: Sector Gates (As seen in the Maeslantkering, Rotterdam, NE) **System 2:** Sunken Barge (As seen in the Bayou Chene, LA)

System 3: Barge Arc (Novel Design)

STRUCTURAL SYSTEM ALTERNATIVES System 1: Sector Gates

Ondeploye

Benefits:

- Only system with precedent at this scale
- Design and maintenance challenges are more easily predictable

Challenges:

- High bending moments along the front faces
- Limiting scale of ball bearings is a documented concern
- Widest landing area for housing gate in open position

STRUCTURAL SYSTEM ALTERNATIVES System 1: Global Behavior

(d) Double Arc Channel Geometry

(e) Double Arc Loading

Table: Sector Gate Radii

		Alternative A (Channel Deepening)	Alternative B (Channel Widening)	Alternative C (Full Channel)	
Channel Width B		700'	900'	1, 200'	
q	30°	700'	900'	1,200'	
θ	45°	495'	636'	849'	
Ang	60°	404'	520'	693'	
Arc	90°	350'	450'	600'	

Geometric Constraint: $R_d \sin \theta_d = \frac{B}{2}$

Unbraced Arc Segment:

Internal Loads between Supports:

 $P(\phi) = \frac{qR}{\sin\theta} \left[\sin\phi + \sin\left(\theta - \phi\right) - \sin\theta\right]$

 $M(\phi) = \frac{qR^2}{\sin\theta} \left[\sin\phi + \sin\left(\theta - \phi\right) - \sin\theta\right]$

 $z(\phi) = \frac{qR}{\sin\theta} \left[\cos\phi - \cos\left(\theta - \phi\right)\right]$

Maximum Design Loads:

$$P(\phi) = qR \left[\sec\left(\frac{\theta}{2}\right) - 1 \right]$$
$$z(\phi) = qR \tan\left(\frac{\theta}{2}\right)$$
$$M(\phi) = qR^2 \left[\sec\left(\frac{\theta}{2}\right) - 1 \right]$$

STRUCTURAL SYSTEM ALTERNATIVES System 1: Concept Model

STRUCTURAL SYSTEM ALTERNATIVES System 2: Barge Gate

Benefits:

- Simple deployment
- Simple to maintain
- Load is resolved by gravity without significant abutments

Challenges:

- Unprecedented at this scale
- Would increase material demand by up to 100% versus sector gate alternative
- Maintenance would be done in wet condition

STRUCTURAL SYSTEM ALTERNATIVES System 3: Barge Arc (BArc)

Undeployed

Deployed

Benefits:

- Curvature eliminates bending stress in the barrier
- Reduces material demand by up to 50% versus sector gate alternative
- Similar deployment mechanism as sector gates
- No ball bearing needed

Challenges:

- Unprecedented design
- Would require a dry dock for maintenance
- Center point interlocking needed for eccentric loading
- Back-span needed for stability

STRUCTURAL SYSTEM ALTERNATIVES System 3: Global Behavior

Table: Arc Gate Radius of Curvature

		Alternative A (Channel Deepening)	Alternative B (Channel Widening)	Alternative C (Full Channel)
Channel Width <i>B</i>		700'	900'	1, 200'
le $ heta_{ m s}$	60°	700'	900'	1,200'
	90°	495'	636'	849'
Ang	120°	404'	520'	693'
Arc	150°	362'	466'	621'
				(θ_s)

Geometric Constraint: $2R_s \sin\left(\frac{1}{2}\right) = B$

Unbraced Arc Segment:

Internal Loads between Supports:

$$P\left(\phi\right) = -qR$$

$$z\left(\phi
ight)=0$$

$$M\left(\phi\right) = 0$$

 Table: Total Axial Thrust in Arc (kips)
 Using q as defined in Appendix A

		Alternative A (Channel Deepening)	Alternative B (Channel Widening)	Alternative C (Full Channel)
Channel Width B		700'	900'	1, 200'
Barrier Depth $m{h}_{wall}$		90'	70'	70'
s	60°	97,300	95,000	126,700
Arc Angle U	90°	68,800	67,200	89,600
	120°	56,200	54,900	73,200
	150°	50,400	49,200	65,600

STRUCTURAL SYSTEM ALTERNATIVES System 3: Concept Model

Estimated Minimum Structural Material: 15,900 US tons steel

BArc Deployment System

Doors to seal dry dock while barrier is stored

Rollers guide the arc into place during deployment

Pins engaging to provide axial thrust

Sluice Doors for Submerging and Backwater Release

Segment Interlocking for Eccentric Loading

Appendix A: Load Calculations

Barrier Scope

Elevation view of barrier face within channel

Quantity	Alternative 1 (Full Channel)	Alternative 2A (Channel Deepening)	Alternative 2B (Channel Widening)
Channel Width (ft.)	1,200'	700'	900'
Channel Depth (ft.)	45'	65′	45'
Barrier Height (ft.)	70'	90'	70'
Surge Protection Height (ft.)	25'	25'	25'

Alternative Design Scopes

Quantity	Working Value	Notes
Barrier Height $h_{ m wall}$	Alt. 2A: 90 <i>ft</i> . Alt. 1 & 2B: 70 <i>ft</i> .	Chosen to allow a surge protection height of $25 ft$.
Design Water Level h	Alt. 2A: 90 ft. Alt. 1 & 2B: 70 ft.	Setting still water level $h = h_{wall}$ is conservative in design against barrier rupture
Significant Wave Height H_s	5 ft.	Assumed to be low because of position within bay*
Back Water Level h_{back}	Alt. 2A: 65 <i>ft</i> . Alt. 1 & 2B: 45 <i>ft</i> .	Would be at least NAVD88

Quantity	Units	Alternative 1 (Full Channel)	Alternative 2A (Channel Deepening)	Alternative 2B (Channel Widening)	
Peak Wave Pressure (p_1)	psf	347	339	347	
Top Wave Pressure (p_2)	psf	347	339	347	
Base Wave Pressure (p_3)	psf	108	64	108	
Uplift Wave Pressure (p_u)	psf	108	64	108	
Total Wave Force per unit Barrier Length (q_w)	klf	16	18	16	4
Total Hydrostatic Force per unit Barrier Length (q_s)	klf	90	121	90	
Total Projected Force Resisted	kips	132, 000	97, 300	95, 400	

Static Load

Hydrodynamic Load